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Abstract 
Nonlinear response-history analysis is beneficial for obtaining inelastic structural responses 

that resemble reality, especially for high-rise, long-span, damping, or base-isolated structures. 
However, to obtain reliable responses, one of the key issues is proper input excitation selection. In 
this study, we develop the Taiwan recorded ground motion database for structural response history 
analysis, which is based on ten target response spectra, local recorded ground motions, and the 
mean-squared error (MSE) of the major selection index. Target spectra for seven general sites, 
with corner periods ranging from 0.4 s to 1.0 s, and three Taipei Basin seismic microzonation sites 
were chosen, all of which have a return period of 475 years. A total of 30 records were selected 
for each target spectrum to provide an initial reference for choosing input excitations before 
executing time-history analysis. The ground motion selection fitness index was based on the MSE. 
This study concludes by providing suggestions for addressing practical issues in database 
applications, such as methods for selecting reference scale factors (SFs) for bidirectional ground 
motions, SF and MSE thresholds, and principles for selecting multiple records. 

Keywords: recorded ground motion database, response history analysis, Taiwan Building Code, 
Taiwan general sites, Taipei Basin sites 

 
Introduction 

Time-history analysis studies the behavior of a 
structure to obtain detailed displacement and internal 
force information at specific time steps and thus gain a 
better understanding of structural nonlinearity. This 
approach is widely used for dynamic structural analysis. 
Input excitations are extremely important elements 
impacting the reliability of structural responses, and 
this stability of solutions of structural analysis is mainly 
influenced by two requirements: the number of 
recorded time-histories and the characteristics of 
recorded response spectra. The first requirement, for 
design purposes, is that a sufficient number of records 
with sufficient variability is selected in order to achieve 
unbiased structural response results. For the second 
requirement, recorded spectral shapes should reflect the 
site-specific characteristics generated by seismic 
hazards and site effects. 

The motivation for this study was to provide an 
initial reference and proper data source for dynamic 
time-history analysis in engineering practices. Using 
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basic principles for generic applications and the Taiwan 
Building Code (TBC) regulations, we developed the 
Taiwan recorded ground motion database for structural 
response history analysis. A total of ten datasets are 
grouped in this database. Seven datasets are for general 
sites, which do not incorporate consideration of near-
fault effects (Liu et al., 2020), and three datasets are for 
Taipei Basin sites. Each dataset includes 30 selected 
ground-motion records based on a target design 
spectrum that reflects one of the representative site 
characterizations in Taiwan. 

For generic applications and to ensure equivalence 
to shape characteristics of recorded response spectra, 
the observed range of target spectral periods and 
modified decay of spectral acceleration (Sa) after 
certain corner periods (T0) were applied. For general 
sites, the period ranges from 0.03 s to 3 s and Sa is 
proportional to T 

-1 after T0. For Taipei Basin sites, the 
period range is 0.01-8.0 s, and Sa is proportional to T 

-1 
and T 

-2, respectively, after T0 and a period of 4.0 s. The 
corner period T0 is defined as the intersection of regions 
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of the spectrum where spectral acceleration is constant 
and where spectral velocity is constant, which is highly 
dependent on site condition. 

Target Design Spectra 

Under the current seismic design code regulations 
in Taiwan, a site can be classified into one of three 
categories according to regional characteristics: general 
sites, near-fault sites, and Taipei Basin sites. In this 
study, which does not consider near-fault effects, the 
target design spectra for developing the Taiwan 
recorded ground motion database include seven sets for 
general sites (Figure 1) and three sets for Taipei Basin 
sites (Figure 2). 

General Sites 

If all combinations of S D

S  and S D

1  for general sites 
with a return period of 475 years are considered, a first 
class site (a hard site) without near-fault effects, can be 
categorized into three groups depending on the 
distribution of T0 for code-based normalized design 
spectra (with an effective peak acceleration (EPA) of 
0.4 g): T0 equal to 0.5, 0.6, and 0.7 s. The T0 range can 
be extend to 0.4-1.0 s if the site amplification factors 
(Fa and Fv) follow a semi-logarithmic empirical model 
(Jean, 2020), which is formulated in terms of Vs30 and 
designed ground motion intensities (Ss and S1). Rather 
than setting a constant Sa (e.g., 0.4SDS or 0.4SMS) after a 
spectral period larger than 2.5T0, as is done for a 
conservative consideration of seismic design force in 
the current TBC, in this study, the Sa after T0 is assumed 
to continue to be proportional to T 

-1 for general sites so 
that real ground motion characteristics are reasonably 
approximated. 

 
Fig. 1 Seven normalized target design spectra for 

general sites (EPA of 0.4 g). 

Taipei Basin Sites 

For Taipei Basin seismic microzonation sites 1, 2, 
and 3 (TAP1, TAP2, and TAP3) with a return period of 
475 years from the current TBC, all SDS values are 0.6 
and the T0 values are 1.6, 1.3, and 1.05 s, respectively. 
In addition, with reference to past earthquake data, in 
this study the corner period defined by the intersection 
of regions of constant spectral velocity and spectral 
displacement is designated as TL, which is the cut-off 

point for Sa being proportional to T 
-1 and T 

-2. TL is 
chosen to be 4.0 s in accordance with seismic hazard 
analysis results (Jean et al., 2020). 

 
Fig. 2 Three target design spectra for Taipei Basin sites 

(thick solid lines). 

Ground Motion Selection Approach 

In accordance with the above-mentioned ten target 
design spectra, TBC regulations, and application limits 
of target design spectra at long period ranges, we 
propose the following methodology for recorded 
ground motion selection (after Liu et al., 2020): 

1. The recorded response spectrum is presented as the 
geometric mean of both horizontal spectra, which is 
the basis for spectral amplitude scaling and spectral 
shape goodness-of-fit testing of horizontal 
components. Sa is computed at 50 points, which are 
uniformly spaced over the log period scale from 
0.01 s to 10 s. 

2. The period range for the spectral shape goodness-
of-fit estimation is 0.03 s to 3 s for general sites; this 
range avoids celebrated earthquake events (e.g., 921 
and 331 severe earthquakes) that dominate selection 
results and have unrealistic target spectral shapes at 
long periods. The period range for spectral shape 
goodness-of-fit estimation is 0.01 s to 8.0 s for 
Taipei Basin sites; this reflects the actual spectral 
trends after TL, including those at long period ranges. 

3. The ranking method for recorded response spectra 
uses a scale factor (SF) and mean-squared error 
(MSE). The calculation process for the rank index 
is as follows: 

(a) Calculate SF0 from: 

   
0

ln ( ) ln ( )
= exp( )

N

target i record i
i

Sa T Sa T
SF

N

  
 (1) 

where Ti is the ith spectral period in a specified range, 
N is the total number of points of the specified 
periods, Satarget is the target Sa, and Sarecord is the 
recorded Sa, which is defined as the geometric mean 
spectrum of both horizontal components. 
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(b) Calculate MSE0 from: 

   
2

0

0

ln ( ) ln ( )
N

target i record i
i

Sa T Sa T SF
MSE

N

   

  (2) 

(c) Calculate SFm for reference scaling from: 

 0

0

0.9 , 0.9
 = 

, 0.9
min min

m

min

SF RTR RTR
SF

SF RTR

 




      (3) 

 0where  = min ( ) ( )min record i target iRTR Sa T SF Sa T  

is the minimum record-to-target ratio in a specified 
spectral period range. 

(d) Calculate MSEm for rank index from: 

   
2

ln ( ) ln ( )
N

target i record i m
i

m

Sa T Sa T SF
MSE

N

   

  (4) 

MSE0 or MSEm denote fitness index. The lower the 
MSE, the more similar the shapes between target and 
scaled recorded spectra. MSEm is larger than MSE0 
because of the criteria restricting recorded spectra from 
falling more than 10 percent below the target spectrum 
at any one period. In addition, SF0 or SFm denote 
scaling index, which can be applied to scale the 
amplitude for both horizontal components of the 
accelerograms. The scaled recorded spectrum may 
present a certain design level and conforms to the TBC 
requirements. In general, lower MSE and SF values are 
preferable in practice. 

Taiwan Recorded Ground Motion Database 

The earthquake data used in this study are from the 
Taiwan Strong Motion Instrumentation Program 
(TSMIP) operated by the Central Weather Bureau 
(CWB) from January 1991 to June 2018. In accordance 
with the above ten target design spectra, ground motion 
selection approach, and data sources, Figure 3 shows 
the complete procedure and statistics for the 
construction of the Taiwan recorded ground motion 
database for structural response history analysis. 

The purpose for recorded ground motion candidate 
selection is to set adequately relaxed restrictions and 
then collect as many records as possible. Regarding the 
strong-motion station criteria, for general sites, the Vs30 
level decreases while T0 rises and the division points of 
the Vs30 range are 270, 360, and 520 m/s. For Taipei 
Basin sites, the range of selected stations is extended to 
the group with next lowest T0. 

Each dataset corresponding to each group of target 
spectra contains the first 30 recorded ground motions 
with the smallest MSE0. The number of earthquake 
events decreases with increasing T0, which means that 
in Taiwan, few earthquake events with large 
magnitudes inducing long energy periods occurred.  
The number of stations in each group is greater than 24, 
which is sufficiently large to cover the range for strong-
motion station distributions. In addition, the statistics 
for the MSE0 range are within 0.038 for general sites 
and 0.079 for Taipei Basin sites, which are less than the 

Fig. 3 Procedure and statistics for construction of the Taiwan recorded ground motion database 
for structural response history analysis.

Target Spectrum Setting of Each Group

• For General Site: • For Taipei Basin Site:

• Target Spectrum Parameters of Each Group:
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Recorded Ground Motion Candidate Selection

•Data Sources:
‐ Taiwan Strong Motion Instrumentation Program (TSMIP)
‐ Engineering Geological Database for TSMIP (EGDT)

• Time Period:  Jan 1991 ~ June 2018

• Intensity Threshold:
‐ For general site: PGAGM ≥ 100 gal
‐ For Taipei Basin site: PGAGM ≥ 50 gal

•Ground‐Motion Station Condition of Each Group:

• Statistics for Candidate Records of Each Group:

Constructing the Taiwan Recorded Ground Motion Database
for Structural Response History Analysis

•Recorded Spectrum Type:  geometric mean (GM) of both horizontal components
•No. of Sa points:  50 points uniformly spaced over the log period scale from 0.01 s to 10 s
•Period Range for Goodness‐of‐Fit Estimation: 
‐ For general site:  0.03 s ~ 3T0 s  (total 26 to 30 period points)
‐ For Taipei Basin site: 0.01 s ~ 8.0 s  (total 48 period points)

•Recorded Spectrum Ranking Procedure:

1. Calculate SF0 – Compute the mean ratio between recorded Sa and target Sa in the specified 
period range:

2. Calculate MSE0 – Compute the mean‐squared logarithmic error between recorded Sa after SF0
scaling and target Sa in the specified period range:

3. Calculate SFm – Evaluate the minimum record‐to‐target ratio (RTRmin) for recorded Sa after SF0
modification and target Sa in the specified period range, and then determine SFm after 
comparison of RTRmin and 0.9:

4. Calculate MSEm – Compute the mean‐squared logarithmic error between recorded Sa after 
SFm scaling and target Sa in the specified period range:

5. Rank Seed Records – Rank the top 30 seed records in ascending order based on MSE0

•Dataset Statistics of Each Group:

Group G1 G2 G3 G4 G5 G6 G7 TAP3 TAP2 TAP1

T0 (sec.) 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.05 1.30 1.60

TL (sec.) ‐ ‐ ‐ ‐ ‐ ‐ ‐ 4.0 4.0 4.0

SS 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6 0.6 0.6

Group G1 G2 G3 G4 G5 G6 G7 TAP3 TAP2 TAP1

Station
Condition

360 ≤
Vs30

360 ≤
Vs30 

270 ≤
Vs30 
≤ 520

270 ≤
Vs30 
≤ 520

Vs30
≤ 360

Vs30
≤ 360
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≤ 360

TAP3 &
General Site

TAP2
&
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TAP1
&

TAP2
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0

0
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N
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i
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MSE
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   0
0

0

0.9 , 0.9
= where  = min ( ) ( )

, 0.9
min min

m min record i target i

min

SF RTR RTR
SF RTR Sa T SF Sa T

SF RTR

  


Group G1 G2 G3 G4 G5 G6 G7 TAP3 TAP2 TAP1

# of events 19 16 18 14 10 8 9 6 2 2

# of stations 28 25 24 26 28 28 28 26 24 28

MSE0 range 0.015 ~ 0.034 0.017 ~ 0.038 0.015 ~ 0.034 0.013 ~ 0.033 0.013 ~ 0.031 0.008 ~ 0.029 0.012 ~ 0.031 0.018 ~ 0.035 0.017 ~ 0.079 0.029 ~ 0.071

MSEm range 0.033 ~ 0.224 0.035 ~ 0.207 0.021 ~ 0.134 0.019 ~ 0.157 0.020 ~ 0.229 0.013 ~ 0.180 0.024 ~ 0.206 0.027 ~ 0.226 0.042 ~ 0.555 0.088 ~ 0.520

SF0 range 0.76 ~ 5.30 1.12 ~ 4.85 0.81 ~ 4.62 0.98 ~ 5.01 1.34 ~ 4.85 0.87 ~ 5.12 0.89 ~ 5.15 0.76 ~ 5.61 3.05 ~ 5.96 2.52 ~ 5.81

SFm range 0.93 ~ 6.50 1.36 ~ 6.51 0.95 ~ 5.68 1.17 ~ 6.99 1.601 ~ 6.49 1.13 ~ 6.09 1.13 ~ 6.40 1.09 ~ 7.50 4.00 ~ 9.92 3.55 ~ 9.48

Group G1 G2 G3 G4 G5 G6 G7 TAP3 TAP2 TAP1

# of records 1,527 1,527 976 976 825 825 825 3,977 133 130

# of events 329 329 229 229 142 142 142 455 23 21

# of stations 279 279 186 186 206 206 206 403 49 51

   0ln ( ) ln ( ) 0
N

target i record i
i

Sa T Sa T SF    , which satisfies
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0.164 required in the New Zealand structural design 
standard (NZS 1170.5:2004-A1, 2016). This comparison 
shows that the database developed in this study is 
appropriate for practical applications. Figure 4 presents 
scaled recorded spectra for the smallest MSE0 
compared with corresponding target spectra for group 
G4 (general site; T0 = 0.7 s) and group TAP2 (Taipei 
Basin site; T0 = 1.05 s). 

 

 
Fig. 4 Scaled and non-scaled recorded spectra of the 

smallest MSE0 for group G4 (top plot) and group 
TAP2 (bottom plot). 

Key parameters are classified into four categories 
listed in the metafile of each dataset in the Taiwan 
recorded ground motion database: 

1. Seismic Source: earthquake time (UTC), epicentral 
coordinates (WGS-84), moment magnitude, focal 
depth, epicentral distance, and hypocentral distance. 

2. Strong-Motion Station: station code, station 
coordinates (WGS-84), Vs30 value, located seismic 
zone, component, and CWB record filename. 

3. Rank Parameter: SF0, MSE0, SFm, and MSEm. 
4. Ground Motion (after baseline correction): PGA 

(A), PGV (V), PGD (D), V/A, AD/V2, cumulative 
absolute velocity (CAV), strong-motion durations 
(5%–75% and 95% Arias intensity), record length, 
and Sa at 50 specified periods. 

Conclusions and Suggestions 

This study describes the construction of the Taiwan 
recorded ground motion database, which contains 
seven datasets for general sites and three datasets for 
Taipei Basin sites. Each dataset includes 30 recorded 
time histories and information related to spectral fitness 
and scale factors (SFs), seismic source, strong-motion 
stations, and ground motion intensity. This database 
provides a useful reference for selecting input motions 
during practical response history analysis. We suggest 
the following for bidirectional dynamic analysis when 
utilizing this database: 

1. Each record listed in the metafile contains both 
horizontal components, and its geometric mean has 
its own rank parameter. The SF in these parameters 
offers a reference for generating uni- or bi-
directional input excitations. It is appropriate to use 
one SF from the geometric mean for bidirectional 
input excitations. 

2. The criterion for better spectral fitness is an MSE 
less than 0.045 estimated from empirical 
observations. In practice, however, this could be 
relaxed to be less than 0.164, in accordance with the 
New Zealand standards. An SF less than 5.0, is 
recommended and an SF larger than 7.0 is regarded 
as inadequate. 

3. When selecting multiple ground motions, all 
earthquake events should be unique and should 
consider a minimum of three ground motions. In 
addition, each earthquake event should not exceed 
two records when considering a minimum of seven 
or eleven ground motions. The SF determination for 
multiple ground motions can be compared with the 
k1−k2 approach outlined in New Zealand standards. 

4. Structures with a longer predominant period (Tp) 
should be examined more carefully. If 1.5 times Tp 
exceeds the applicable limits (3T0 or 8.0 s), the 
suitability of the specific spectral shape should be 
specially confirmed. It is worth noting that the SFs 
listed in the database for general sites are calculated 
via normalized target spectra with generic 
application purposes; these SFs should therefore be 
corrected depending on the actual demands. 
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